Notebook useLAGR

Purpose: Used to generate the Lagrange Equations based on the Module LAGR.m

Author: Jürgen Habelt Date: 2014-02-28

About History

Originally, in my Diploma work 1978, I created a program for "Computer Assisted Generation of the LAGRANGE Equations of a Holonomic Rigid Body System". It was written in the computer language PL1/FORMAC and run on the IBM 360 system.

In 2013 I decided to rewrite my Diploma work as Word document and to port the original PL1/FORMAC program to Mathematica. The result was the module LAGR.m and this notebook used to aim the usage of this module.

For a better understanding, please refer to the Diploma work at http://www.juergen.habelt-jena.de/en

Usage Instructions

1. At first time you should install the module LAGR.m. It should reside in a folder named Mechanics.

Copy the folder Mechanics inside Lagr.zip to Mathematica's Applications folder Copy the notebook and input sample file to your notebook folder

- 2. Load the module using the Needs instruction below.
- 3. Prepare the input/output.
- 3.1. Invoke the chooseLocations function
- 3.2. Prepare an input file as plain text file.
- 3.3. Browse for the input file.
- 3.4. Browse for / define the output file.
- 4. Invoke the lagr function to calculate the Lagrange Equations in form of coefficients.
- 5. Inspect the results either in this notebook or in the output file defined earlier.

Sample System

Sample Input File

```
This is the system from the Diploma Work with
    - 3 bodies
    - 3 degrees of freedom
    - relative description of movement
    - 2 springs
    - 1 damper
3
True
{{1.,0.,0.},
{0.,1.,0.},
{0.,0.,1.}}
                           (* Rotation Matrix body 0 *)
{fu[q[0]],0.,0.}
                          (* Origin of body 0 *)
                              (* Relation body of body 1 *)
\{\{1.,0.,0.\},
                           (* Relative Rotation matrix *)
 {0.,1.,0.},
{0.,0.,1.}}
\{q[1],0.,0.\}
                          (* Distance vector *)
\{0.,0.,0.\}
                               (* Fixed point body 0 *)
                               (* Fixed point body 1 *)
\{0.,0.,0.\}
False
                               (* No Forces and Moments *)
                              (* Relation body of body 2 *)
\{\{Cos[q[2]], Sin[q[2]], 0.\}, (* Relative Rotation matrix *)\}\}
```

```
{-Sin[q[2]],Cos[q[2]],0.},
                                                    0., 1.}}
 \{0.,0.,0.\}
                                                                                                                (* Distance vector *)
 \{0.,0.,0.\}
                                                                                                                 (* Fixed point body 1 *)
                                                                                                                (* Fixed point body 2 *)
 \{0.,r,0.\}
 True
                                                                                                                (* Forces and Moments input *)
 0.}
 \{0.,0.,0.\}
                                                                                                               (* Relation body of body 3 *)
 \{\{1.,0.,0.\},\\\{0.,1.,0.\},
                                                                                                 (* Relative Rotation matrix *)
     \{0.,0.,1.\}
 \{0.,q[3],0.\}
                                                                                                (* Distance vector *)
 \{0.,0.,0.\}
                                                                                                                (* Fixed point body 2 *)
 \{0.,0.,0.\}
                                                                                                               (* Fixed point body 3 *)
 0.}
 \{0.,0.,0.\}
           (* Springs *)
 0
 1
\begin{cases} xs[0,1,1] -> 0, \\ xs[0,1,2] -> 0, \\ xs[0,1,3] -> 0, \\ xs[1,0,2] -> 0, \\ xs[1,0] -> 0, \\ xs[1,0,2] 
 xs[1,0,3] -> 0
 Assumptions ->-1.0*q[1]-1.0*xs[1,0,1]>0
 1
                                                                                                          (* Dampers *)
 3
{
xd[3,2,1]->0,
xd[3,2,2]->0,
xd[3,2,3]->0,
xd[2,3,1]->0,
xd[2,3,2]->0,
xd[2,3,3]->0}
 1
                                                                                                         (* Special Cases *)
```

Calculation

<< Mechanics`

Package Mechanics - used to calculate the Euler - Lagrange - Equations

Exports the functions chooseLocations and lagr

For more information click on the Documentation link below

Documentation

? chooseLocations

Used to locate the input / output files.

First call this function, then use the buttons to invoke the File Open / File Save dialogs.

?lagr

Reads input, calculates results and writes output.

Create input file, then call lagr[], then read output.

For the format of input files look at a sample file.

Button["Load the Package", Get["Mechanics`"]]

Load the Package

Button["Choose Locations", chooseLocations[]]

Choose Locations

Button["Invoke Calculation", lagr[]]

Invoke Calculation