Select your language
Please, choose the desired language:
The free fields that solve the field equations are again specified:
Ψ := ∑ p ∑ r = 1 2 ( Sqrt [ m / ( V p 0 ) ] c ^ p 1 , p 2 , p 3 r u r Exp [ − ⅈ exp ] ) + ∑ p ∑ r = 1 2 ( Sqrt [ m / ( V p 0 ) ] d ^ p 1 , p 2 , p 3 r , † v r Exp [ + ⅈ exp ] ) Ψ_ ¯ := ( Hermitian [ Ψ ] ⋅ γ 0 ) // QASimplify [ ]
H := − ⅈ ( Ψ ¯ // QASimplify[] ) ⋅ ∑ i = 1 3 ( γ i ⋅ ( D x i ( Ψ // Evaluate ) /. p → p 1 ) ) + m ( Ψ ¯ // QASimplify[] ) ⋅ ( Ψ /. p → p 1 ) H := ∫ V H ⅆ 3 x H // QAEvaluate2 // Timing { 154.141 , − 2 1 ^ ∑ p p 0 + ∑ p c ^ p 1 , p 2 , p 3 1 , † ⋅ c ^ p 1 , p 2 , p 3 1 p 0 + ∑ p c ^ p 1 , p 2 , p 3 2 , † ⋅ c ^ p 1 , p 2 , p 3 2 p 0 + ∑ p d ^ p 1 , p 2 , p 3 1 , † ⋅ d ^ p 1 , p 2 , p 3 1 p 0 + ∑ p d ^ p 1 , p 2 , p 3 2 , † ⋅ d ^ p 1 , p 2 , p 3 2 p 0 }
P i_ := ⅈ ( Ψ ¯ // QASimplify [ ] ) ⋅ ( γ 0 ⋅ ( D x i ( Ψ // Evaluate ) /. p → p1 ) ) P i_ := ∫ V P i ⅆ 3 x Map [ ( P i // QAEvaluate2 ) & , { 1 , 2 , 3 } ] // Timing { 116.688 , { − ∑ p c ^ p 1 , p 2 , p 3 1 , † ⋅ c ^ p 1 , p 2 , p 3 1 p 1 − ∑ p c ^ p 1 , p 2 , p 3 2 , † ⋅ c ^ p 1 , p 2 , p 3 2 p 1 − ∑ p d ^ p 1 , p 2 , p 3 1 , † ⋅ d ^ p 1 , p 2 , p 3 1 p 1 − ∑ p d ^ p 1 , p 2 , p 3 2 , † ⋅ d ^ p 1 , p 2 , p 3 2 p 1 , − ∑ p c ^ p 1 , p 2 , p 3 1 , † ⋅ c ^ p 1 , p 2 , p 3 1 p 2 − ∑ p c ^ p 1 , p 2 , p 3 2 , † ⋅ c ^ p 1 , p 2 , p 3 2 p 2 − ∑ p d ^ p 1 , p 2 , p 3 1 , † ⋅ d ^ p 1 , p 2 , p 3 1 p 2 − ∑ p d ^ p 1 , p 2 , p 3 2 , † ⋅ d ^ p 1 , p 2 , p 3 2 p 2 , − ∑ p c ^ p 1 , p 2 , p 3 1 , † ⋅ c ^ p 1 , p 2 , p 3 1 p 3 − ∑ p c ^ p 1 , p 2 , p 3 2 , † ⋅ c ^ p 1 , p 2 , p 3 2 p 3 − ∑ p d ^ p 1 , p 2 , p 3 1 , † ⋅ d ^ p 1 , p 2 , p 3 1 p 3 − ∑ p d ^ p 1 , p 2 , p 3 2 , † ⋅ d ^ p 1 , p 2 , p 3 2 p 3 } }
J i − : = ( Ψ ‾ ⁄ ⁄ QASimplify [ ] ) ⋅ ( γ i ⋅ ( Ψ /. p → p 1 ) ) J i − : = ∫ v J i ⅆ 3 x QAEvaluate2 [ J 0 ] // Timing { 41.5313 , 2 1 ^ ∑ p 1 + ∑ p c ^ p 1 , p 2 , p 3 1 , † ⋅ c ^ p 1 , p 2 , p 3 1 + ∑ p c ^ p 1 , p 2 , p 3 2 , † ⋅ c ^ p 1 , p 2 , p 3 2 − ∑ p d ^ p 1 , p 2 , p 3 1 , † ⋅ d ^ p 1 , p 2 , p 3 1 − ∑ p d ^ p 1 , p 2 , p 3 2 , † ⋅ d ^ p 1 , p 2 , p 3 2 }