Notations

The Quantum Algebra extension uses a number of notations to improve the readability of expressions. They supplement the notations that already exist in the basic package. This also takes into account the need for documentation.

Notations of the basic package:

  • Operator Notation
  • Superdagger
  • Centerdot

Additional Notations

  • Integral
  • Total Notation
  • Partial Derivative
  • Small Circle

Overview

 

Name Sample Notation FullForm - Simplified or Complete Expression
Operator
d ^ p 1 , p 2 , p 3 r ,
Operator[d, "H", List[QASimplescript[p, 1, False], QASimplescript[p, 2, False], QASimplescript[p, 3, False]], List[r]]
SuperDagger
d ^ p 1 , p 2 , p 3 r ,
Hermitian[Operator[d, List[QASimplescript[p, 1, False], QASimplescript[p, 2, False], QASimplescript[p, 3, False]], List[r]]
CenterDot
d ^ p 1 , p 2 , p 3 1 , d ^ p 1 , p 2 , p 3 1
NonCommutativeMultiply[Operator[d,"H",List[QASimplescript[p, 1, False], QASimplescript[p, 2, False], QASimplescript[p, 3, False]], List[1]], Operator[d, List[QASimplescript[p, 1, False], QASimplescript[p, 2, False], QASimplescript[p, 3, False]], List[1]]]
QAIntegrate
P i_ := V P i 3 x
QAIntegrate[QASimplescript[p, i, False], V, 3, x]
QASum
p r = 1 2 ( sqrt [ m / ( V p 0 ) ] d ^ p 1 , p 2 , p 3 r , v r Exp [ + exp ] )
QASum[Operator[d, "H", List[QASimplescript[p, 1, False], QASimplescript[p, 2, False], QASimplescript[p, 3, False]], List[r]],p]
QAD
D x i ( Ψ // Evaluate )
QAD[\[psi] // Evaluate, QASimplescript[x, i, False]]
SmallCircle
ma1 ma2
 SmallCircle[ma1, ma2]

 

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.

Ok